Jeder hat es in seiner Schulzeit gelernt: Wenn zwei negative Zahlen miteinander multipliziert werden, ist das Ergebnis positiv: (‒2) ∙ (‒6) = 12. Aber warum eigentlich?

Guillermo Bautista hat es in einem Blogartikel verständlich beschrieben.

Nehmen wir einfach einmal an, dass das Produkt zweier negativer Zahlen nicht positiv, sondern negativ sei. Geht das so einfach oder bekommen wir dann Probleme?

Dann würde also gelten (‒2) ∙ (‒3) = ‒6. Nun versuchen wir mit dieser komischen Annahme, folgende Umformungen vornehmen:

‒2 ∙ (‒3 + 3) = ‒2 ∙ (‒3 + 3)

‒2 ∙ (0) = (‒2) ∙ (‒3) + (‒2) ∙ (3)

0 = ‒6 + (‒6)

0 = ‒12.

Damit haben wir aus der ersten gültigen Gleichung eine ungültige Gleichung hergeleitet: ein Widerspruch! Das ist gar nicht gut. Also können wir unsere Annahme nicht halten und sollten besser annehmen, dass (‒2) ∙ (‒3) = -6. Dann klappen auch alle unsere Umformungen.

Einen formalen Beweis, könnt ihr in dem oben verlinkten Artikel von Bautista nachlesen.


git e-mail Informatik Studium video Sport bloggen HP35s 35c3 server pdf raspberrypi Windows Latex Funktionen Text admin das-labor importiert audio gamejam esp8266 ccc game-engine Spaß Clonezilla wiki cloud ldl TV Termin Datenbank Tools Linux RSS software Konferenz hardware buch screencast hacking Linkliste Kino Twitter c't programmierung Film kunst ctf Dortmund Gesellschaft Taschenrechner Second Life Geschichten Chat Bilder Tafelbild python Mathe Tipp podcast Comic 34c3 JavaScript Spiele llm bildung ldlmooc Wissenschaft fun lernen mooc